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PREFACE

The investigation reported herein was authorized by the Los Angeles
Port Authority under a contract, Agreement No. WES 78-16, dated 15 Novem-
ber 1978.

The investigation was conducted from July 1979 to December 1979 by
personnel of the Hydraulics Laboratory, U. S. Army Engineer Waterways
Experiment Station (WES), under the direction of Mr. H. B. Simmons,

Chief of the Hydraulics Laboratory, Mr. F. A. Herrmann, Jr., Assistant
Chief of the Hydraulics Laboratory, Dr. R. W. Whalin, Chief of the Wave
Dynamics Division, and Mr. C. E. Chatham, Chief of the Wave Processes
Branch. Mr. D. G. Outlaw and Dr. J. R. Houston conducted the investiga-
tion and prepared this report. Mrs. M. L. Hampton and Mr. J. Kuhnert
aided in development of the finite-element grids and data presentation.
Drs. H. S. Chen and C. C. Mei of the Massachusetts Institute of Technol-
ogy provided documentation of the hybrid finite-element computer pro-
gram they developed and materials to aid in its utilization.

Commanders and Directors of WES during the investigation and the
preparation and publication of this report were COL John L. Cannon, CE,

and COL Nelson P. Conover, CE. Technical Director was Mr. F. R. Brown.
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NUMERICAL ANALYSIS OF HARBOR RESONANCE
RESPONSE IN EAST CHANNEL, LOS ANGELES HARBOR

PART I: INTRODUCTION

Objective

1. The objective of this study was to investigate the comparative
response of East Channel of the Port of Los Angeles (Figure 1) to long-
period wave excitation for the existing configuration and for three
proposed dredging alternatives near East Channel. Amplification factors
were computed as a function of period at the north end of East Channel
and the normalized maximum current velocity was computed at the entrance

to East Channel and at the Bulk Loading Terminal, berth 50. These data
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were plotted to ascertain whether or not significant differences in
channel resonance might occur that would potentially impact (either
positively or negatively) ship mooring conditions.

2. A previous harbor oscillation study of the Port of Los
Angeles* used the same numerical model; however, the previous study con-
sidered effects of a more extensive harbor improvement plan and did not

include the non-Federal dredging (NFD) investigated herein.

Improvement Plans

3. The following three proposed dredging plans were considered:

Designation Description

Phase I-B Federal Project for harbor deepening
and associated non-Federal dredging
retaining the submerged bar south

of pier 1

Phase I-B (NFD-1) Phase I-B plan with the submerged bar
south of pier 1 dredged to -45 ft
mllw

Phase I-B (NFD-2) Phase I-B plan with approximately

70 percent of the seaward end of
the submerged bar south of pier 1
dredged to -35 ft mllw

Figures 2-5 jillustrate the base plan and the three dredging alternatives.

4. Waves from a southerly direction with periods from 60 to 600
sec were considered. Wave amplitudes and current velocities were cal-
culated at 1- to 10-sec intervals, dependent on the period range. Res-
onant peaks were defined by using incident wave periods in 0.25-sec

increments.

* J. R. Houston. 1977 (Feb). '"Los Angeles Harbor Numerical Analysis
of Harbor Oscillations," Miscellaneous Paper H-77-2, U. S. Army Engi-
neer Waterways Experiment Station, CE, Vicksburg, Miss.
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PART II: NUMERICAL MODEL

5. The response of East Channel to long-wave excitation was de-
termined by using a hybrid finite-element numerical model developed at
the Massachusetts Institute of Technology.* The model solves the follow-

ing generalized Helmholtz equation:
w2
v [hGonvetan] + = Gy = 0

where V 1is the gradient operator, h(x,y) 1is the water depth, ¢{(x,y)**
is the velocity potential defined by U(x,y) = -V4(x,y) , with U(x,y)
being a two-dimensional velocity vector, w 1is an angular frequency,
and g 1is the acceleration due to gravity. Equation 1 governs small
amplitude undamped oscillations of long waves. It has been further as-
sumed that the flow is irrotational.

6. The boundary condition along the shoreline and in the harbor
is that the normal component of the velocity be equal to zero.

7. The Helmoltz equation:

2
v (x,y) + S b0ay) = 0 )

is the governing equation for a constant-depth ocean region outside the
basin.

8. For a harbor in a semi-~infinite ocean with a straight coastline
there are incident, reflected, and scattered waves. The scattered wave

has a velocity potential ¢S given by

* H. S. Chen and C. C. Mei. 1974 (Aug). '"Oscillations and Wave
Forces in an Offshore Harbor (Applications of the Hybrid Finite Ele-
ment Method to Water-Wave Scattering),'" Report No. 190, Massachusetts
Institute of Technology, Cambridge, Mass.

*% For convenience, symbols and unusual abbreviations are listed and
defined in the Notation (Appendix A).
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¢s = ;z% aan(kr) cos no (3

where a = are unknown coefficients and Hn(kr) are Hankel functions of
the first kind of order n .
9. ¢S satisfies the radiation condition that the scattered wave
must behave as an outgoing wave at infinity. This condition is known
as the Sommerfeld radiation condition and may be expressed mathematically
as follows:
i_i: r(—g; - ik) 6, =0 (4)
10. Chen and Mei used a calculus of variations approach and ob-
tained a Euler~Lagrange formulation of the boundary value problem. The
following functional F with the property that it is stationary with re-
spect to arbitrary first variations of ¢(x,y) was constructed by Chen

and Mei:

2 W 2
F(¢) = /f 1/2 ) h(vp)® - L ¢ | da

4
(e, - 9.) 3¢, ~ ¢.)
R I R I -
+ 1/2 5§ h(¢R - ¢I) ——an—a——‘—— da - § h(ba T da (5)
3¢ 3(op = ¢p)
~ §the 3 ia + § h¢1 a da
a

[ where
A = region inside the harbor
P § = line integral
= far field velocity potential
¢I = velocity potential of the incident wave
n, = unit normal vector outward from region A
a = boundary of region A

¢_ = total velocity potential evaluated on boundary a




11. Proof was given by Chen and Mei that the stationarity of this
functional is equivalent to the original boundary value problem.

12, The integral equation obtained from extremizing the functional
is solved by using a finite~element method. This method is a technique
of numerical approximation that involves dividing a domain into a number
of nonoverlapping subdomains which are called elements.

13. The solution of the problem is approximated within each ele-
ment by suitable interpolation functions in terms of a finite number of
unknown parameters. These unknown parameters are the values of the
field variable ¢(x,y) at a finite number of points whiih are called
nodes. The relations for individual elements are combined into a system
of equations for all unknown parameters.

l4. 1In the region outside the basin, the velocity potentials
are solved analytically in terms of unknown coefficients. The region is
considered a single element with an "interpolation function" given by
Equation 3. The infinite series is terminated at a finite value such
that the addition of further terms does not significantly influence the
calculated values of ¢(x,y) . The resulting equation is combined with
the system of equations for unknown parameters at nodal points within
the basin and this complete system is solved using Gaussian elimination
matrix methods.

15. n(x,y) is related to ¢(x,y) through the linearized dynamic

free surface boundary condition

39 (x,y) (6)

1
n(xa}') = - g at

16. The horizontal velocity components have the following form:

u(x,y) = - fig:—’z)— 3 vix,y) = - fa—n%“y—) )

17. The hybrid finite-element method (so named by Chen and Mei
because the method involves the combination of analytical and finite-
element numerical solutions) is a steady-state solution of the boundary

value problem. The steady-state response of a harbor to an arbitrary




forcing function can be easily determined within the framework of a
linearized theory.

18. Plate 1 shows the finite-element grid used to portray East
Channel and the surrounding harbor area. Grid modifications needed to '
represent the Federal project and the non-Federal dredging plans were

easily accomplished by merely changing water depths in the dredged areas.

L. V. -




PART III: RESULTS

19. Wave-height amplification at a station inside the harbor is

e m———

defined as the wave height at the station divided by twice the incident
wave height. This definition of amplification factor is traditional and
is a result of the fact that the standing wave height for a straight
coast with no harbor (and total reflection) would be twice the incident
wave height due to superposition of incident and reflected waves. Wave-
height amplification for all plans at sta 1 (north end of East Channel)
over the 60- to 600-sec period range is illustrated in Plates 2-5. Sta-

tion locations are shown in Figure 6. Normalized maximum current

-~ /
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Figure 6. Station locations

velocity (NMCV) as a function of wave period is shown in Plates 6-9 for
sta 2 (entrance to East Channel). The plotted current velocity multiplied
by the incident wave height in feet (or metres) gives velocity in units of
feet per second (or metres per second). The computed velocities have no
vertical component or variation since linear long-wave theory is used.

The velocity plotted is the maximum that would occur over a wave period.
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NMCV results for sta 3 (berth 50, Bulk Loading Terminal) are shown in
Plates 10-13,.

20. Plates 2-5 show that the calculated amplification at sta 1
in East Channel for the base plan was less than 4 over the 60- to 600-sec
period range with the exception of the fundamental mode of oscillation
centered at 360.5 sec. Resonant response in the 60- to 200-sec period
range consisted of lower, relatively broad peaks centered at 66, 92, 106,
and 134 sec. The resonant response for the Phase I-B, I-B w/NFD-1, and
I-B w/NFD-2 plans was similar to the base plan at periods less than the
fundamental mode of oscillation except for some shifts in central fre-
quency of the peak response. For the fundamental mode of oscillation
near 360 sec, significant differences in the amplification magnitude
occurred. Central periods (T) and amplitudes of maximum wave-height
amplification (R) for the base plan and the three harbor improvement

plans were:

Phase I-B Phase I-B

Base Phase I-B w/NFD-1 w/NFD-2

T, sec R T, sec R T, sec R T, sec R
66.0 2.7 66.0 2.9 66.0 2.9 66.0 3.0
92.0 2.6 92.0 2.4 92.0 2.2 92.0 2.2
106.0 3.0 106.0 2.9 106.0 2.4 106.0 2.7
134.0 3.6 128.0 4.2 118.0 3.9 127.0 4.2
360.5 45.4 353.0 34.2 334.5 76.5 348.0 42,2

Amplification for modes of oscillation at periods less than that of the
fundamental mode was generally broad and not sharply peaked. Amplifica-
tion for the fundamental mode was sharply peaked for all plans. However,
the bandwidth of the resonant mode decreased for the Phase I-B w/NFD-1
plan which had significantly increased amplification. The bandwidth

for each plan of the resonant amplification for the fundamental mode at

a level equal to 25 percent of the maximum amplification was:

25 Percent
Period Peak Amplification Bandwidth
Plan sec  Amplification Level sec
Base 360.5 45.4 11.4 13
Phase I-B 353.0 34.2 8.6 9
(Continued)
12




25 Percent

Period Peak Amplification Bandwidth
Plan sec Amplification Level sec
Phase I-B 334.5 76.5 19.1 2
w/NFD-1
Phase I-B 348.0 42.2 10.6 9
w/NFD-2

21. NMCV data for the entrance to East Channel (Plates 6-9) show
a trend similar to amplification data for the north end of the channel.
Peak normalized currents at sta 2 again occurred at the same periods as
maximum amplification at sta 1 except for the base plan where the period
for the NMCV shifted from 66.0 to 64.0 sec. Also, the amplification
peak for the base plan at 134.0 sec was not clearly defined in the NMCV
data and had shifted to 128 sec. Central periods and magnitudes of the

NMCV at sta 2 for each plan were:

Phase I-B Phase I-B
Base Phase I-B w/NFD-1 w/NFD-2

T, sec NMVC T, sec NMCV T, sec NMCV T, sec NMCV
64.0 3.5 66.0 3.0 66.0 2.5 66.0 3.0
92.0 3.1 92.0 3.2 92.0 2.5 92.0 2.9
106.0 4.1 106.0 4.1 106.0 2.9 106.0 2.7
128.0 2.3 128.0 2.7 118.0 3.3 127.0 3.3
360.5 57.1 353.0 46.0 334.5 85.0 348.0 57.3

The NMCV data for fundamental modes of oscillation for each plan were
significantly larger in magnitude than for the shorter period
oscillations.

22. For periods less than 200 sec, NMCV at sta 3 adjacent to berth
50 (Plates 10-13) peaked for each plan between 120 and 140 sec with
smaller peaks between 60 and 100 sec. The maximum NMCV at sta 3 for each
plan again occurred at the period of the fundamental oscillation of East
Channel. For the fundamental oscillations, the NMCV was highest for the
base plan and smallest for the Phase I-B w/NFD-2 plan. The NMCV for the
NFD-1 plan at berth 50 for the fundamental oscillation was smaller than
for the base plan although the wave-height amplification of the NFD-1
plan was largest for sta 1 in East Channel. The decreased velocity for

the NFD-1 plan relative to the base plan shows the influence of the

13




outer harbor area and the plan modification on the fundamental model of
oscillation for the channel. Central periods and magnitudes of the NMCV
at sta 3 for each plan were:

Phase I-B Phase I-B

Base Phase I-B w/NFD-1 w/NFD-2
T, sec NMCV T, sec NMCV T, sec NMCV T, sec NMCV

63.0 1.7 63.0 1.5 -- -- - --
83.5 2.4 80.0 2.0 80.0 2.1 81.0 2.2
92.5 2.1 88.0 2.0 87.0 2.0 88.0 2.2
134.0 3.7 132.0 3.8 124.0 2.4 129.0 3.0
-- -- - -- 140.0 2.4 - --
360.0 21.2 353.0 13.9 334.5 17.0 347.5 11.5

23. Contours of wave-height amplification and NMCV vectors for
X fhe 66~, 92-, 106~, 134-, and 360.5-sec modes of oscillation for the base
plan are shown in Plates 14-23, Locations of nodes and antinodes in the

modes of oscillation can easily be seen in the plots. In the base plan

the 66.0-sec oscillation had antinodes at the north end of the channel, at

the center, and just inside the entrance (Plate 14). The 92.0-sec node
had antinodes at the north end of the chanel and at a location approxi-
' mately 40 percent of the channel length from the entrance, with the node
' slightly inside the entrance (Plate 16). The 106.0-sec mode had anti-
nodes at the north end and at a location approximately 25 percent of the
channel length from the entrance (Plate 18). The node for the 106.0-sec

mode was located at the channel entrance. The 134.0-sec mode had anti-

nodes at the north end of the channel and slightly inside the channel en-
trance (Plate 20). The fundamental mode of oscillation at 360.5 sec de-
veloped with the node near berth 50 and an antinode at the north end of

1 the channel (Plate 22).

i 24. Modes of oscillation for the base plan and the three improve-
! ment plans considered were quite similar at periods less than the funda-
N mental period of oscillation. The fundamental modes, however, are sig-
nificantly different in amplification, period, and half-width of maximum
response. Contours of wave~height amplification and the NMCV vectors for

each of the fundamental modes with each of the three plans are shown in

Plates 24-29. The midpoint of the NMCV vectors represent the point at

} Y

e b




which the magnitudes were computed (Plates 15, 17, 19, 21, 23, 25, 27,
and 29). In each plan, the peak NMCV for the fundamental mode occurred

at the region of maximum rate of change in surface slope or just inside

the channel entrance.
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PART IV: CONCLUSIONS

25. Comparison of relative wave-height amplification and NMCV
data for East Channel of the Port of Los Angeles for the base plan and
three proposed improvement plans indicates relatively small differences
in maximum amplification and maximum currents during resonant oscilla-
tions below 200 sec. Channel response varied significantly for the
fundamental mode of oscillation (about 330-360 sec) for each plan. Wave-
height amplification for the fundamental mode at the closed (north) end
of East Channel increased 69 percent relative to the base plan for im-
provement plan Phase I-B w/NFD-1 and was a minimum for improvement plan
Phase I-B (25 percent decrease relative to the base plan). Wave-height
amplification for improvement plan Phase I-B w/NFD-2 was decreased
7 percent relative to the base plan.

26. It can be inferred that for the Phase I-B plan where the peak
response for the fundamental mode decreased 25 percent and response for
shorter period resonant oscillations was not significantly changed,
mooring conditions, if changed, should improve. Phase I-B w/NFD-2 plan
results were similar to base plan results except for the shift in period
of the fundamental mode of oscillation (360.5 to 348.0 sec); conse-
quently, mooring conditions should be similar to those for the base plan.
The increase in amplification of the fundamental mode of oscillation
for improvement plan Phase I-B w/NFD-1 could have an adverse impact on
mooring conditions if the moored ship exhibited a resonant response at

the same frequency.
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APPENDIX A: NOTATION |
!
a Boundary of region A
A Area of region inside a harbor
F Functional
g Acceleration due to gravity, 32.2 ft/sec2
h Water depth, ft
Hn Hankel function of the first kind of order n
i Imaginary number
k Wave number, ft_l .
n Integer {
n, Unit vector normal to boundary a :
r Spherical coordinate, ft
t Time, sec
u Velocity in x-direction, ft/sec
U Velocity vector
v Velocity in y-direction, ft/sec
X Cartesian coordinate, ft
vy Cartesian coordinate, ft
o Unknown coefficient .
v Gradient operator, ft
n Wave amplitude, ft
Spherical coordinate, degrees
) Total velocity potential, ftz/sec
¢a Total velocity potential evalua;ed on boundary a , ftz/sec
¢I Incident velocity potential, ft ésec .
o Far field velocity potential, ft2/sec .
¢S Scattered velocity potential, ft“/sec |
w Angular velocity, radians/sec

Boimae -
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